
HOW TO USE COMBINATORIAL OPTIMIZATION PROBLEMS (TRAVELING
SALESMAN PROBLEM) FOR PROCEDURAL LANDSCAPE GENERATION

Alan Ehreta, Peter Jamiesona, and Lindsay Graceb
aMiami University and bAmerican University

email: jamiespa@miamioh.edu

KEYWORDS

Landscape Generation, Traveling Salesman Problem

ABSTRACT

In this paper, we examine how the traveling salesman
problem (a combinatorial optimization problem) can be
used to create virtual landscapes. For this work, we
show how the entire search space of ten city TSP in-
stances can be organized into virtual landscapes, and il-
lustrate how by changing the TSP instance problem we
can control some properties of these landscapes. We pro-
vide three different methodologies for producing land-
scapes and show results for TSP problem instances. Our
results show that our one of our methodologies gener-
ates the best aesthetically looking results and can be
controlled by the problem.

1. INTRODUCTION

In this work, we demonstrate how combinatorial opti-
mization problems can be used to create procedural vir-
tual landscapes. The point of this work is to show the
optimization space (mapped into 3D) to algorithm de-
signers to help them get a general feel for what their
problem search space looks like. A secondary benefit of
our approach is that using combinatorial optimization
problems gives us some control over landscape gener-
ation for small scale problems. Thirdly, this control of
landscape generation can be compressed and distributed
in a multi-player game environment by transmitting the
problem instance, and thus, this is a form of compres-
sion for landscapes noting that you can also send the
initial random seed for a noise generator such as Perlin
noise (Perlin 2002).

In this paper we will describe our methodology for creat-
ing these landscapes from the traveling salesman prob-
lems (TSPs) that are small enough for us to compute
all solutions. Our methodology uses the Steinhaus-
Johnson-Trotter algorithm (Surhone et al. 2010) to
progress through the solution space, but because of the
relationship between neighboring solutions, we use var-
ious schemes to create more realistic landscapes. With
three methodologies, we show how different problem in-
stances (where cities are placed) of the TSP can be used
to create different looking landscapes as defined by what

they look like and their respective distributions.

2. BACKGROUND

In this section, we will review research in procedu-
ral landscape generation for virtual worlds (including
games), describe what combinatorial optimization prob-
lems are and why they are relevant, and describe the
TSP.

2.1 PROCEDURAL LANDSCAPE GENERA-

TION

The video game “No Man’s Sky” to be released in 2015
boasts that it contains a massive procedurally generated
universe. Procedural generation allows designers to cre-
ate worlds without the need to build the details. One
question we have is can this computation used to create
these worlds also be leveraged for other valuable com-
putation? Therefore, this work is a derivative from our
harnessing computation (Jamieson et al. 2012) work.

For a high-level survey of papers on landscape genera-
tion for virtual worlds and games, Carli provides a thor-
ough review on the subject that includes how to create
landscapes as well as other procedural places such as
cities (Carli et al. 2011). An earlier and slightly more
comprehensive review is done by Haggstrom (Häggström
2006) where they examine procedural generation from
landscape all the way to plants and life. Two other ma-
jor surveys of this area include Cruz (Cruz 2015) where
how a full virtual-space can be created using a combi-
nation of methods is studied and Togeliu et. al. look
at search space based procedural generation (Togelius
et al. 2011).

In most procedural landscape generation, the key step
is the function generating randomness. As mentioned
earlier, Perlin noise (Perlin 2002) is a type of noise that
has gradients that when looked at from a the perspective
of a birds-eye looks very similar to mountain regions.
Many researchers have looked at variations on noise to
create various different visual effects.

2.2 COMBINATORIAL OPTIMIZATION

Our work focuses on creating hill- and mountain-based
terrain using the solution space to what are called com-



binatorial optimization problems. These types of prob-
lems are characterized based on they are problems that
have a finite set of unique objects that need to be ar-
ranged, visited, or used in some way such that, in many
cases, the best solution is not feasible to compute as the
number of objects grows.

These problems tend to be described by graphs as in the
field of graph theory. However, engineers and scientists
solve many real-world optimization problems as mod-
eled by graphs and framed as combinatorial optimiza-
tion problems. For example, the creation and manufac-
turing of modern day microchips requires a number of
combinatorial optimization problems to be reasonably
(heuristically) solved; for example, the FPGA place-
ment problem is one small example of many (Jamieson
2010). Another real-world example is the scheduling
problem where a solution for a schedule of individuals,
machines, or deliveries can be created given constraints;
a small example of this is the job-shop scheduling prob-
lem (Menćıa et al. 2014).

2.2.1 TRAVELING SALESMAN PROBLEM

We have chosen the TSP as our combinatorial optimiza-
tion problem. Traditionally, problems like these quickly
become intractable to optimally solve as the number
of objects factorially increases the number of solutions.
Meta-heuristic algorithms are used to find reasonable so-
lutions to these problems and are classified as nature in-
spired versus non-nature inspired (Blum and Roli 2003).

Imagine 4 cities in the set {[A]mstersdam, [T]oronto,
[C]incinatti, and [L]ondon}. A tour of these cities in-
cludes the two solutions A,T,L,C and A,L,T,C. For these
examples, the second tour results in a shorter distance
traveled. For this problem, we define distance traveled
as the cost function - the cost for a given solution - in
this case, distance traveled. The goal of an algorithmic
solution for the TSP is to find the minimum cost, and as
the number of cities grows this becomes computationally
in-feasible.

3. METHODOLOGY

In this work, we use the search space of a TSP problem
instance as the noise generation function for generating
a landscape. For example, our above TSP with four
cities has 24 solutions each of which has a cost (total
Cartesian distance). Using these 24 costs as a parameter
for elevation, we can create a landscape.

To create a 2D landscape there are some additional chal-
lenges. First, what are the x and y coordinates for each
cost function z noting that each solution must have a
unique x and y coordinate, and related to this, how do
we generate every point in the permutation space? Sec-
ondly, will this noise generated by a TSP instance and
some manipulation look like a landscape?

3.1 GENERATING PERMUTATION POINTS

To traverse the entire search space for tractable TSP
problems, we use the Steinhaus-Johnson-Trotter algo-
rithm (Surhone et al. 2010). This algorithm picks ob-
jects from the problem in a similar fashion to gray code
for binary systems. Given each solution instance we cal-
culate the cost function to get the value for the z-axis.
We describe three methods to place solutions in the next
section.

3.2 2D PLACEMENT METHODS

Our three different methods to determine the x and y
coordinates are called striation, merge, and gradient.
For each method we show the pseudo-code noting that
the input TSPcosts is an array consisting of all cost
function values traversed using the Steinhaus-Johnson-
Trotter algorithm.

Algorithm 1 Striation algorithm

1: procedure Striation(TSPcosts, Out)
2: 2Dmat = 2DSquare(TSPcosts)
3: while square = nextSquare(2Dmat,100,100) do
4: Rotate square random angle (-90 to 90)
5: end while

6: Out = Gausian filter 2Dmat: 40x40, sigma=300
7: end procedure

The algorithm 1 we call striation since it constructs the
2D map line by line from the Steinhaus-Johnson-Trotter
algorithm, which seems to result in striations. We per-
form some small transformations by rotating groups of
100x100 pixel buckets. The Gaussian filter is used to
smooth out the features after we have done our slight
transformation.

Algorithm 2 Merge algorithm

1: procedure Merge(TSPcosts, Out)
2: 2Dmat = 2DSquare(TSPcosts)
3: while square = nextSquare(2Dmat,100,100) do
4: Place square randomly in g1
5: Place square randomly in g2
6: end while

7: Out = Poisson image edit (g1, g2)
8: end procedure

The second algorithm 2, called merge, differs from the
first algorithm by creating two 2D spaces and using the
Poisson image edit (Pérez et al. 2003) to merge the two.
The goal is to have less regularity in the landscape that
we tend to have in our first algorithm (Algorithm 1).
The third algorithm 3, called gradient, tries to manip-
ulate square regions. This methodology generates some
of the best landscapes. Also, note that there is an edge
function defined in this methodology. The reason for



Figure 1: Random Results: (a) the city map (b) the result distribution (c) striation (d) merge (e) gradient

Algorithm 3 Gradient algorithm

1: procedure Gradient(TSPcosts, Out)
2: 2Dmatrix = 2DSquare(TSPcosts)
3: r1 and r2 = set of rectangular matrix, side length

ratio 10:1 row:col from 2Dmatrix
4: z1 and z2 = zero matrix the same size as square
5: while t doraversing square regions
6: z1[random column]=random rectangle r1s;
7: z2[random column]=random rectangle r2s;
8: rotate z1 and z2 by a random angle
9: g1 = g1+z1;

10: g2 = g2+z2;
11: end while

12: edges = sine waves for each of the 4 edges
13: Out = combine edges, g1, and g2
14: end procedure

this is that in future work, we want to use larger TSP
instances, but this means that it is impossible to calcu-
late all the possible solutions ahead of time and a con-
tinuous process is needed. In this approach we create
smaller regions and plan to stitch them together mean-
ing we need a common border. Joining boundaries can
be challenging, so for now, our approach is to make the
edges of a square tile common by making the edges a
common function. This allows us to stitch tiles together
seamlessly.

4. RESULTS

In this section, we show how different 10 city TSPs
problem instances result in varying results for proce-
dural landscape generation. The first set of results we
show are a random TSP instance to provide a com-

parison point to our other results. In some cases
we show the distribution of cost function calculations
as these differences result in varying results. Using
the free tool Terragen 3 http://planetside.co.uk/

terragen-3-free-download from Planetside Software
we import our data to create virtual landscapes, which
we also show in these results.

4.1 RANDOM

For the random TSP problem instance, ten cities are
randomly assigned to an 8 by 8 grid as shown in Figure
1 (a). To the left, in Figure 1 (b) we show the distribu-
tion of cost functions based on all possible cost function
scores noting that the optimal solution sits near 20. Fi-
nally, Figure 1 (c), (d), and (e) represent the landscapes
generated in Terragen 3 for each of our methodologies
in the previous section - striation, merge, and gradient.

Note the similarities between Figure 1 (c) and (d) in this
case, which both result in what we might describe as a
relatively flat bumpy hill range. The stark difference
in Figure 1 (e) is due to the gradient of values, which
results in a smoother overall look and more variety be-
tween the peeks and valleys.

4.2 TWO CLUSTERS

The two cluster TSP instance creates two separated
groupings of cities in the upper left and lower right cor-
ners of the map as shown in Figure 2 (a). This means
that any city paths (beyond two such paths) that cross
this separation will add significant distance to the re-
spective cost function, and there should be distinct good
and bad solutions in this search space. This is demon-
strated in the distribution in Figure 2 (b) where we can



Figure 2: Results: (a) the city map (b) the result distribution (c) striation (d) merge (e) gradient

see what we might call a comb like function or in sig-
nals and systems the pulse response as seen in frequency
domain.

This results in a very repetitive landscape for the stria-
tion method as seen in Figure 2 (c). Figure 2 (d) shows
the merge method, which still has the bumpy character-
istics, but looks better than random. Finally, Figure 2
(e) results in a much more mountainous landscape com-
pared to the football TSP instance and similar to the
random results. This is because there are more bad so-
lutions and excellent solutions and this creates clearer
peaks and valleys.

4.3 THREE CLUSTERS

Creating three clusters instead of the previous two
changes the results slightly and the arrangement of cities
can be seen in Figure 3 (a). The distribution (Figure 3
(b)) has a similar look to the one in Figure 2 (b), but
the creation of three clusters has changed the charac-
teristics of this new distribution slightly. For example,
there are two bumps from 35 to the left for the optimal
values that do not have any symmetrical bumps on the
right hand side of the distribution curve. Additionally,
the gradient of values is less distinct as compared to the
two cluster TSP problem instance.

Figure 3 (c) landscape remains characteristically bumpy
and Figure 3 (d) has a look similar to it’s predecessors.
Figure 3 (e) is also similar to Figure 2 (e) except the
severity of the peek to valley change seems to be less in
the three cluster TSP problem. This is, likely, the case
because the distribution of cost functions has a more
continuous distribution of values.

4.6 DISCUSSION

There are two key observations that we have drawn from
these results. Firstly, a TSP problem instance that re-
sults in a normal-like distribution has a slight impact
on the generated landscape depending on characteris-
tics of the curve, but those variations are very small.
When a problem instance is created, such as the two
cluster and three cluster, the distribution and result-
ing landscapes are significantly different to the normal
curve (as expected), and it appears that based on the
number of clusters, we can create different landscapes.
Unfortunately, as this approach needs to fully traverse
the entire search space, it is not computationally feasi-
ble to try larger cluster sets, and we, currently, can not
explore how a larger number of groupings (greater than
3), with different distances between groupings impacts
our generated landscapes.
The second observation we make is that the nature of the
TSP solution space as traversed by Steinhaus-Johnson-
Trotter algorithm results in regularities that do not look
good in terms of landscape generation.

5. CONCLUSION AND FUTURE WORK

This paper shows how combinatorial optimization prob-
lem search spaces can be manipulated and used to pro-
cedurally generate virtual landscapes. The reason we
demonstrate the viability of this approach is that the
search space values can be of interest to algorithmic de-
signers, and the landscapes generated can be controlled
by manipulating the TSP problem instance resulting in
a slight compression advantage.
In this paper, we focused on showing how the TSP can
be used to create virtual landscapes. We provided three



Figure 3: Results: (a) the city map (b) the result distribution (c) striation (d) merge (e) gradient

different methodologies for how to take the TSP cost
function values (our z values) and then how to map these
into unique x and y coordinates to create a landscape.
We then showed how different TSP problem instances
resulted in different landscapes. Of the three methods
presented in this paper, our gradient approach creates
the aesthetically best looking landscapes without the
characteristic bumpy look that both the striation and
merge methods tend to produce.

For future work, our focus is on using larger TSPs that
can not be computationally solved (beyond 11 cities).
We have already suggested in our description of the
gradient method, how we plan to deal with stitching
together tiles of landscape. This stitching itself, can
be improved from using simple trigonometric functions,
but our larger focus is on how can we create larger land-
scapes from large TSP problems, and also provide al-
gorithmic benefits to engineers and algorithm design-
ers. Our first approach into this domain will be to use
meta-heuristic algorithms, such as genetic algorithms
and simulated annealing algorithms, to find local op-
timal points, and then use these points as seed points
for a region/tile in which the additional points will only
differ by only one or two objects. That will create re-
gions in which the designer sees similar or neighboring
solutions.

REFERENCES

Blum C. and Roli A., 2003. Metaheuristics in combi-
natorial optimization: Overview and conceptual com-
parison. ACM Comput Surv, 35, 268–308. URL
http://doi.acm.org/10.1145/937503.937505.

Carli D.M.D.; Bevilacqua F.; Pozzer C.T.; and DOr-
nellas M.C., 2011. A survey of procedural content
generation techniques suitable to game development.

In Games and Digital Entertainment (SBGAMES),
2011 Brazilian Symposium on. IEEE, 26–35.

Cruz L.M.V., 2015. High-Level Techniques for Land-
scape Creation. Ph.D. thesis.

Häggström H., 2006. Real-time generation and render-
ing of realistic landscapes. Ph.D. thesis.

Jamieson P., 2010. Revisiting Genetic Algo-
rithms for the FPGA Placement Problem. In
GEM. 16–22. URL http://www.users.muohio.edu/

jamiespa/html_papers/gem_10.pdf.
Jamieson P.; Grace L.; and Hall J., 2012. Research
Directions for Pushing Harnessing Human Compu-
tation to Mainstream Video Games. In Meaning-
ful Play. URL http://www.users.muohio.edu/

jamiespa/html_papers/meaning_12.pdf.
Menćıa R.; Sierra M.R.; Menćıa C.; and Varela R., 2014.
A genetic algorithm for job-shop scheduling with op-
erators enhanced by weak lamarckian evolution and
search space narrowing. Natural Computing, 13, no. 2,
179–192.

Pérez P.; Gangnet M.; and Blake A., 2003. Poisson
image editing. In ACM Transactions on Graphics
(TOG). ACM, vol. 22, 313–318.

Perlin K., 2002. Improving noise. In ACM Transactions
on Graphics (TOG). ACM, vol. 21, 681–682.

Surhone L.M.; Tennoe M.T.; and Henssonow S.F.,
2010. Steinhaus-Johnson-Trotter algorithm. Be-
tascript Publishing.

Togelius J.; Yannakakis G.N.; Stanley K.O.; and
Browne C., 2011. Search-based procedural content gen-
eration: A taxonomy and survey. Computational In-
telligence and AI in Games, IEEE Transactions on,
3, no. 3, 172–186.


